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Abstract

In this paper, we consider the problem of the existence of general non-separable variate
orthonormal compactly supported wavelet basis . when the symbol function has a special form.
We prove that the general non-separable variate orthonormal wavelet basis doesn’t exist if the
symbol function possesses a certain form. This helps us to explicate the difficulty of constructing
the non-separable variate wavelet basis and to hint how to construct non-separable variate wavelet
basis.
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1. Introduction

Since the introduction by Daubechies!!! of compactly supported orthogonal wavelet
bases in R with arbitrary high smoothness, various new wavelet bases have been constructed
and applied successfully in image processing, numerical computation, statistics, etc. Many
of these applications, such as image compression, employ wavelet bases in R2. Virtually
all of these bases are separable, that is, the bivariate functions are simply tensor products
of univariate basis functions. A separable varaite wavelet basis is easy to construct and
simple to study, for it inherits the features of the corresponding wavelet basis in R, such as
smoothness and support size.

Nevertheless, separable variate bases have a number of drawbacks. Because they are so
special, they have very little design freedom. Further, separability imposes an unnecessary
product structure, which is artificial for natural images. For example, the zero set of a
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separable scaling function contains horizontal and vertical lines. This “preferred directions”
effect can create unpleasant artifacts that become obvious at high image compression ra-
tios. Nonseparable wavelet bases offer the hope of a more isotropic analysis/®3]. Therefore
many researchers want to construct nonseparable variate wavelet bases to adapt to practical
necessity. In the last several years, only a few non-separable variate wavelet bases have
been constructed(?4=8], Recently, the named second-named author gave a conclusion about
non-separable variate orthonormal basis in R2. His result is not only of theoretical interest,
but also of interest in practical applications["‘].

In this paper, we extend the result in [3] to the general case, that is, in R™. In the
result, we have found that the general non-separable variate wavelet basis does not exist
when the corresponding symbol function has a certain form. This also shows why we can
not construct non-separable variate wavelet bases easily.

The main result is in Section 2. Several auxiliary lemmas are given in Section 3. The
proof of the result is show in Section 4.

2. Main Result

It is well known that the method to construct wavelets is usually via the founding of
multiresolution analysis. Now we give the definition of multiresolution analysis.

Definition. A multiresolution analysis (abbr. MRA) consists of a sequence of closed
subspaces V; (j € Z) of L?(R™) satisfying

o V;CVjforallje Z;

e f(z) € V; if and only if f(2z) € V4, for all j € Z, = € R™,

. V=) 0¥, = AR

J€Z i€z

e There exists a function ¢ € Vp, such that {¢(- — k)}kez» is an orthonormal basis
for Vo, where R® = {z|z = (z1,-*,Zn), z; € R, j = 1,---,n}, R is the set of all real
numbers and Z™ = Z x --- X Z, Z is the set of all integers. The function ¢ whose existence
is asserted in the above definition is called a scaling function of the given MRA.

Let {V;};ez be an MRA. Then there exists a periodic function mo(&;, - -,&,) such that

$(2€1, to a2§n) = mO(&l,' o 7§n)$(£1’ cot 7€n)a

where ;{; denotes the Fourier transform of ¢, that is,

36 = [ s@re=tds

and £ = (£, --,&n) € R™. The function my is called the symbol function (or low pass filter)
associated with the scaling function ¢.
The orthonormality of {¢(- — k) }rez~ implies that mq satisfies

3 mo¢+m)| =1, (1)

veE™

where E™ denotes the set of all vertices of the unit cube [0, 1]" in R".

In real line R, I. Daubechies constructed compactly supported orthonormal wavelets
which are called Daubechies type wavelets. The scaling function corresponding to Daubechies
type wavelet is called Daubechies type scaling function. The corresponding symbol function

ma(n) = (222 (e,
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N-1
where Q(z) = ¥ qxa* is a polynomial, g € R, N € Z+, Z* is the set of all natural
k=0
numbers and exp (1) = €. For details see [1].
Our main theorem is as follows.
Theorem. Suppose that ¢(zy,---,z,) is the scaling function corresponding to symbol
function mo(&1,---,&n) in a given MRA. Then ¢(z1,---,z,) is obtained by tensor product
of Daubechies type scaling functions if and only if

1 + exp(—i¢;) Nt Mt
mo(fl,"'aﬁn) = H (—'—5——2—) Z Z Ay .-k, EXP ( - 22 klfl) (2)
j=0 k1=0 kn,=0

where ag,...k, € Rand for j=1,---,n, N; € Z*
This theorem indicates that we should choose an mg to have a form different from (2)
in order to construct a non-separable variate wavelet basis.

3. Lemmas

In order to prove Theorem, we now give several auxiliary lemmas. Denote ET = {1/ ]
v=(v1,,v,) € E" Z vj is even}.
Lemma 1. Vk= (kl, o, kn) € 2™, £ = (&, ,&n) € R, we have

cos(h-6)= > di[Jcos vz —kits), 3)

v=(v1,vn)EET ij=1

where d¥’s are constants.

Proof. Denote \; = (0,---,0,%;,0,---,0), where k; is the jth coordinate of \;. We
use induction about the dimensionality n. By simple calculation, we know that (3) holds
when n = 1 and n = 2. Now, assume that (3) holds when n < m, we will show that the
conclusion holds when n = m + 1 in the following:

k= (k1" km+1), €= (€1, -, &m+1), we have
cos (k : E) = cos [(k - ’\m+1) &+ Am-&-l ' f]
=¢0s [(k = Amt1) - €] c0s (Amy1 - €) —sin [(k = Amr1) - €] sin(Ampr - €)
=¢08 [(k — Amt1) - €] cos(Amt1 - &) —sin [(k = Amt1 — Am) €+ Am €] sin A1 - €)
=c0s [(k = Am41) - €] €08 (A1 - &) = sin [(k = Amt1 — Am) - €] cos (A - €) sin(Am1 - €)
= 05 [(k = Am41 = Am) - €] sin(Ap - €) sin(Ame1 - €)

= cos [(k = Ams1) - €] cos(hmsr - €) + % [cos(k — Am) - €] cos(m - €)

- %cos [(k = 2Am41 = Am) - €] cos (Am - ) — cos [(k = A1 — Am) - €]
-sin(Ay, - &) sin(Amy1 - €).

Note that cos [(k — Ams1) - €], cos [(k — Amt1) - €], cos [(k = 2Ami1 — Am) - ¢] and
cos [(k — Am41 = Am) - €] can be expressed by the form (3), hence we deduce that cos (k - )
can be also expressed by the form (3). The proof of Lemma 1 is finished.

Lemma 2. For a trigonometric polynomial

Ay, &) =Y arexp(-ik-§), &= (6, ,én),

keA
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where ax € R, A = {k = (k1, -, kn) | kj € Aj} and A; = {0,---,2N; -1} (j = 1,---,n),
we have the following result:

IA(gl’ ot ,gn)lz = Z Z H bﬁ cos (/J._,;E - k]£]> . (4)

kEA “=(“1,...,#n)eE'{t j=1

Proof. Since

IA(é.l:'“ :ﬁn)lz =(Z ar COS(k . f))z + (Zak Sin(k . f))2
kEA

keA
= Z ax cos(k - ) Z ay cos(l- &) + Z a, sin(k - §) Z a; sin(l - §)
keA leA : kEA leA
= Z axa; cos ((k - 1) -£),
klEA

we immediately complete the proof of Lemma 2 by Lemma 1.
Lemma 3.  Assume that A(¢1,--+,6,) = 3 ax exp(—ik- &) (€ = (&1,°++,&n))
kEA

satisfies

Z |A(E + ,uﬂ')l2 =1, (5)

HEE™

where ap € R. Then bﬁ = 0 in (4) when all k; (j = 1,---,n) are even but not all k; are
zero, where k = (ky,--+,kn).
Proof. By (5) and (4),

1= 3 Jag+pn =3 3 3 o[ eos (wif — ki (& + mim)

HEEN kEA vEE} peE™  j=1

ST S S T cos (5 -k 6). ©)

kEA vEET uck™  j=1

Now we use induction to show the following formula:

Z ﬁ(—-l)k“‘j cos (ng —kj- Ej) = ﬁ (1+(-1)*) cos (ng —k; -§j). (7)

HEE™ j=1 j=1
T fact, by a simple calculation, (7) holds when n = 1 and n = 2. Suppose that (7)

.. 1ds when n = m. We now deal with the case of n = m + 1. Observing that

m-41

Z H (=1)ki#i cos (z/jg —k; 'Ej)

pEE™t j=1
e T
k. .
- Y fevme(aione)
p=(p1, s bm hmt1 JEE™ T =1

T
A (_1)km+1”‘1"+1 cos (ym+1§— - km-i-l : £m+1)

m

= > [T (=1)%# cos (ng —k; "Ej)

p=(p1, 0 mm 0)EE™HL j=1
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- (=1)fmtrsmis cog (Vm+1% = km+1 '€m+1)
T (1) T k€
+ Mz(m,___,;ml)eEmH J:[;[1(—1) K3 cos (1/J 3 k; EJ)
- (—1)km+1bmia gog (Vm+1'72E = km+1 'fm+1)

= Z ﬁ(—l)kf“f cos (ng —kj- fj) cos (Vm+1‘72: — km+1 -Em+1)

I‘=(I-"11"'1“m)€E"‘ j=1
i T
+ Z H(—l)kj”j cos (Uj—2~ - kj . EJ)
p=(p1, m JEE™ =1

T
- (=1)*m+1 cos (Vm+1‘2' — km+1 'fm+1)

m

Z H( —~1)ki#i cos (UJ 5 —k;- EJ)
p=(py,pmm )EE™ j=1
[(1 + (=1)km+1) cos (Vm+1g = km+41 -€m+1)]

Ij (1+(-1)* cos( 72r kj- {1)

thus (7) holds. It follows from (6) and (7) that

Z Z ﬁ 1+( 1)k4) cos( —k;- fj)__ . (8)

v=(v1, v )EED k=(k1,~kn)EA J=1

By the linear independence of { Jf[l cos (v; 5 — kj - ;) }, we deduce that b% = 0 if all k;

(j =1,---,n) are even but not all k; are zero. The proof is completed.
Lemma 4. Assume that mg(1,---,&,) has form (2) and satifies (1). Then

lmo(fu e yfn)lz = Z b* H cos(k;¢;)-
k=(k1,ka)EA  j=1
Proof. By Lemma 2,
oty &' =S X [[thes(wpoke) ©
k€A p=(pr,un)EET j=1

Obviously, it is sufficient to verify that bﬁ = 0 when p # (0,---,0). Thus we assume that
u # (0,---,0) in the following proof.

Because mg(&1,- - ,&n) has the form (2), £, = 7 is the 2N, multiple root of Imo(€1, ey
£.)|%, that is,

al
5€—£|m0(51,"',5n)[2 le=r =0, 1=0,---,2N, ~ L (10)
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By (9) and (10), VI=0,---,2N, — 1,

Z Z H b cos (uj —k; 51)( kp)! cos (up—g - kp7r+l12r—) =0. (11)

k€A pu=(p1,,un)EET j=1,j#p

So we deduce from (11) that

2N,~1

SN T T then (3o ikten G ohreid) -

kp=0 k;j€A;.J#p p=(p1,,un)EE} —I,J#P
(12)

We sum the left-hand side of (12) separately over two summations:

> 2.

kj€A;,j#p #=(l‘11"‘7“n)€E?7 pp=1
2N, -1

[ Z bk H cos (/,L] —k; EJ)( o)} cos (221: —kﬁr-}-l%)]

kp=0 j=1.3#p

_p )3

k;€A;,i#p p=(p1,pn)EEY, up=0
2N, —1 n

[ Z b;’i H cos( kfj)( )‘COS(—ka+l—T2E>]=O.

kp=0  j=1j7#p

It is not hard to know that the second term vanishes in the above formula when [
1,3,--+,2N, — 1. When | = 0,2,---,2N, — 2, the first term disappears. Therefore V!
“,2Np, - 1,

2N, -1

Z Z [ Z bﬁ(—kp)l sin ((-;— - kp) 77)]
k;€EA;, 7P p=(p1,5kn)EET, pp=1  kp=0

n

H cos (“jg - kjfj) =0 (13)

J=l,j#p
and V1 =0,2,---,2N, ~ 2,

2N, -1

S s [ ()]
k€A J#P p=(p1, - un)EBT, pp=1  kp=0

H cos( —k; §]> =0. (14)

J=1,j#p

So by the linear independence of { T[] cos (u; % —k;&;) |k; € Aj, 7 #p, p€ ET},
j=Ll.i#p

we deduce that VI=1,3,---,2N, — 1, k; €Aj, j #p, 1 € ET and p, = 1,

2N, -1

Z bﬁ(—kp)lsin [(—é— - kp)ﬂ'] =0 (15)
kp=0
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and VI=0,2,---,2N, — 2, k; € Aj, j #p, p € E} and pp, =0,

2N, -1 ’
3 bi(—kp) cos [(5 - k,,)ﬂ'] =0. (16)

kp=0

For convenience, we introduce the following notations.
n

1. Yp=(p1, "+, 1n) € E™, define deg (u) = ) y;.
=1

2. Vk=(ki, -, ky) € A, define Q(k) = (w1, -+, w,), where w; = k; — 2[*%].

Obviously, Q(k) € E™, and all k; (j = 1,---,n) are even in k = (ky,---,k,) (€ A) if
and only if deg (Q(k)) = 0. By Lemma 3, if deg ((k)) =0 and k # (0,---,0), then bﬁ = 0.

V7 > 1, assume that b% = 0 when deg (Q(k)) = r — 1. We will show that bk = 0 when
deg (Q(k)) =r.

Set

S = {(kl""vkp—l’kp+17'“vkn) I ki (1 #p)€ Aj}
and
S ={k=(k1, kp-1,kpt1, -, kn) € SP| deg (Qk)) =r}.

It is easy to show that SP = ng;Sf, and that Vk = (ky, -+, kp—1,kpt1,° -+, ks) € SP, (15)

holds when p € E*, p#0and [ = 1,3,---,2N, — 1.
Denote
A" = {k = (k1,-,ks) € A| deg (k) =r}.

Then we immediately have

AT {k € Al(ky, - kot Kpsry o ) € Sy .
p=1

Thus, it is sufficient to prove that b% =0, Vk € {keAl(kr, - kp—1,kpt1, -+ kn) € SP_,
(p=1,---,n).

Obviously, Vk = (ki, -, kp—1,kpt+1,- ", kn) € SP_{ (p = 1,---,n), then k € SP.
Moreover, (15) also holds, that is, when ! = 1,3,---,2N, — 1,

2N, -1 . l !
kpz=0 b, (—kp)" sin [(—2- - kp)ﬂ'] = 0.

Denote [ = 2t + 1. By dividing the above formula into two summations, we have Vit =
0,--+,Np—1,

Np—1

g bl (—-1)**1(2s + 1)** sin [(Zt—;—l - (2s+ 1))71']
+ 3 BE(=ky)'sin [(% - kp)vr] =0. (17)
kyis even

Observe that when (kq,- -+, kp—1,kpt1,"* -, kn) € S*_, and k; is even,

deg (Q((k1, -+ kp—1,kpr kpt1, -+ kn))) =7 — 1,
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hence bﬁ = 0 by the induction hypothesis. So, (17) can be rewritten in the following form:

Np—1
> bh(2s+ 1) =0,  t=0,-,N,- L. (18)

3=0

Since the matrix of coefficients is invertible in the above system of equations, b,’i = 0. By
induction, the proof of Lemma 4 is finished.

Lemma 5. If mg(&,---,&,) satisfies (1), then Imo(&, e ,&.)’2 is separable for the

variables &;,---,&,.
Proof. Set ¢ ¢
281 . _ .28n
Uy = s 5, sty _u" = sin —2—
Note that
cos™ & = cZ cos" 2z sinz + ¢t cos" Yz sin*z — & cos™ Oz sinfz + - -

and cosz = 1 — 2sin® %, hence we derive from Lemma 4 that

Im0(€17' b a&n)|2 = P(uh' . 7“11)7

where P(uy,---,un) is a polynomial of variables u;,-:+,u,. On the other hand, since
mo(&1,- -+, &) has the form (2), we have

P(ula"'yun) = H(l—Uj)NjQ(Ul,"',Un), (19)
=1
where Q(uy,---,uy,) is also a polynomial of variables uy,-- -, Un.

Define transforms: Ty(z) = = and Ti(z) = 1 — z, where £ € R. Then mo(&,---,&n)
satisfies (1) if and only if

> P(T, (w1), -+ T (un)) = 1. (20)

u=(p1, " itn )EE™

In the following, we will use induction to show that equation (20) has a unique solution.
When n = 1, (19) and (20) can be respectively reformulated as

P(uy) = (1 - u1)™Q(w)
and
Plu))+ P(1—u) =1
Thus
(1 - ul)NlQ(ul) + Uile(]. - ’U.1) =1.

By Theorem 6.1.1 in [1], the above equation has a unique solution. Suppose that the equation
(20) has a unique solution when n = m — 1. Now we investigate the case of n = m. By (20),

Z P(T"I (ul)’ o ’Tl-‘m—l(um—l)7 u’m)

(#1,stm—1,0)EE™

+ > P(T,, (1), Ty (Um1), 1 = tm) = 1.
(#1y e stm—1,1)EE™
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It follows from (19) that

m-—1

(1 —u’m)Nm Z H (1 _Tﬂj(uj))NjQ(Tul(ul)f'"7Tum-1(um-1)’ um)

(B1,m—1,0)€E™ j=1

m-—1
+uzm Z H (1-Tl‘j(uj))NjQ(Tﬂl(ul)""vTum_l(um—l), 1 —Um) = 1.
(B1s-spm—1,1)EE™ j=1 (21)

By {1, Theorem 6.1.1] and (21), we have

> TT (1= (4) P QT (w)s -+ Ty (et ) = D (), (22)

(#1ysptm—1)EE™ L g=1

N;— .
where Dy, (u;) = }: dz s d] = Cf\, 411 with C7" indicating the combination number,
that is, m elements bemg taken from n elements.
Set
Npm—1
Q(ul)"'7um) = Z Ql(uly"',um—l)uin' (23)
=0
Then we deduce from (22) and (23) that VI =0,---,N,, — 1,
m— 1
> Ty (1) ™ Qi (T (1), T, (1)) = 7
(B1, s pbm—1)EE™ 1 J'=1
that is,
Z P[m_l (Tp.l (ul)’ R 1Tu.,,._1 (um—l)) = 1; (24)
(H1ye pm—r)EE™™T
where

- 1 _
P M ugy  tmer) = =T H (1 —u)NiQu(ur, -+, Um—1)
dj =1
andl=0,---,N,, — 1.
By the induction hypothesis, the equation(24) has a unique solution P™~!, that is,

Pm ' =pPm -l =0, Ny 1.
Therefore by (19) and (23),
P(ula .o yum) = (1 - um)NmDNm (Um)Pm_l(uh te ,um)) (25)

and (24) also holds when P! in (24) is substituted by P™~!. Thus by induction, the
equation (20) has a unique solution.
Using induction again, we derive from (25) that

n

P(Ul,' . )un) = H(l - uJ)NJDNJ(u])'

Jj=1

Therefore lmo(fl, .- ,§n)|2 is a separable variate. The proof of Lemma 5 is completed.
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4. Proof of Theorem

Necessity.  Suppose that ¢(z;,---,2,) is a tensor product of n Daubechies type
scaling functions ¢;(z1),- -, ¢n(zs). Then

(21,5 Tn) = H‘ﬁ](%

]_

Therefore it follows from the above formula and the definition of Daubechies type wavelet
that

$(€1,++16n) = H@(&;L (26)
aj(gj)zmj(gj)@(g]) (27)

and ] ‘
my(ey) = (LEZR L8N Y0 (exp(-igy)), (28)

Nj—1
where Q;(z) = Z qiz! is a polynomial, ¢ € R and N; € Z*. From (26), (27) and (28),

we deduce that

Lo —ig; .
517 . a§n Hm](€] H(1+e ) Qj(e-zgj)
i=1

JLEEE e ()

where ay, ...k, € R. This finishes the proof of necessity.
Sufficiency. Assume that the symbol function mg(&1,---,&n) corresponding to
#(z1 -+ -, ) satisfies (2). Then we know from Lemma 5 that

ImO(Ela s 75?1)!2 = H(l - uj)NjDNj (U]'),

i=1
where u; = sin® %”- So
lmO(gla"'aEn)lz = H (COS2 51) |Q](eXp (—7"5])” ’ (29)
Jj=1
where
. 2 Nzl ks 2 E k;
|Qs(e™)[* = Dy (ug) = 3 K aya (502 %2) .
kj=0

By (29),

mo(er,--+ ) = £ [ ] ((E2RE) Y0 (exp (-igy) = [T mile). (30)

=1
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So it follows from (30) that

5(51,"'7&;)=ﬁmo(%’...,§%)

k=1

+oo n n n
£ -
- (M) -1 (T () - IToe
= j= j= =1

Thus ¢ is obtained by the tensor product of ¢; (7 = 1,2,---,n), where ¢1,-+-,¢,-1 and ¢,

are n Daubechies type scaling functions corresponding to the symbol functions my, -+, mMp1
and m, respectively. The proof of sufficiency is completed.
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